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We image the Moho at a depth of 
40 km beneath the southern 
margin of the Himalaya and at a 
depth of 55 km beneath the 
Tethyan Himalaya. Most of this 15 
km increase in depth occurs in a 
prominent, forty-kilometer-wide 
step beneath the Greater 
Himalaya. This step is spatially 
coincident with the rise in 
elevation of the Tibetan plateau 
and with the currently-active 
Munsiari Thrust.

We also image the Main Himalayan Thrust 
and Munsiari Thrust, two of the 
recently-active strands of the Himalayan 
fault system (Vannay et al. 2004). 

The Munsiari Thrust is 
recognized by some as 
the lower bound of the 
Main Central Thrust zone 
of high ductile strain, and 
is therefore sometimes 
referred to as MCT-1. It 
also goes by the names 
Almora Thrust, 
Mahabharat Thrust, and 
Dadelhura Thrust in 
di�erent regions of the 
range (Searle et al. 2008).

The map and 
cross-section at right 
(from Vannay et al. 2004) 
show the geologic setting 
and proposed structure of 
the MHT and Munsiari 
Thrust (both highlighted 
in yellow).

The depth to these 
faults and the location 
of their juncture in our 
intrepreted image, right, 
shows good agreement 
with this cross-section. 
Our image also shows a 
Moho step coincident 
with the active Munsiari 
Thrust.

Introduction: In this work we generate crustal images by 
stacking P-S receiver functions. We calculate receiver functions using 
an iterative time-domain method and depth-convert them by back 
propagation in an assumed velocity model. We then bin and stack 
them to obtain two-dimensional images. This method, called 
common conversion point (CCP) stacking, stacks coherent energy 
from crustal conversions at the appropriate depths, while 
simultaneously canceling random noise. This generates a 
two-dimensional image of converting layers in the crust and mantle, 
such as abrupt changes in density or lithology caused by faults or 
other boundaries.

Data: Our array was deployed in 
2005-2006 by India’s National Geophysical 
Research Institute (Mahesh et al. 2010). 
Panel (A) shows the array in relation to 
nearby arrays. Panel (B) shows the 23 
3-component broadband stations spanning 
a distance of 200 km from the Main Frontal 
Thrust to the South Tibetan Detachment. 
Panel (C) shows the locations of events used 
to calculate receiver functions.
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MFT - Main Frontal Thrust
MBT - Main Boundary Thrust

STD - South Tibet Detachment
MCT - Main Central Thrust

MT - Munsiari Thrust
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Comparison with existing 
Himalayan RF images:

Schulte-Pelkum et al. (2005), using the 2-D 
HIMNT array in Central Nepal, and Nabelek et 
al. (2009), using the 800 km-long HiCLIMB 
array:
- imaged the Moho and MHT decollement
- observed strong seismic anisotropy in the 
Indian crust
- proposed the presence of eclogitized Indian 
lower crust.

The depths to our observed Moho and 
decollement agree with their �ndings.

Receiver function images and interpretations 
from the HIMNT array (left) and HiCLIMB 
array (below) shown in their approximate 
relative positions.

Recorded data:
UZ(t) = S(t) * EZ(t) * I(t)
UR(t) = S(t) * ER(t) * I(t)
UT(t) = S(t) * ET(t) * I(t)

Deconvolve to obtain 
Earth response:

ER(ω) = UR UZ* / UZ UZ*

Receiver 
function: 

ER(t)
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Resolution:

- Figure below shows ray density per bin.
- Model bins are 1 km high and ~10 km wide.
- Bins with fewer than 20 rays are removed from the 
image.
- The average number of high-quality receiver functions 
per station was ~40.


